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Abstract. The electron transmission over an oscillating quantum well is studied perturbatively
and numerically in the phase-coherent regime. The dynamically induced multichannel situation
gives rise to a pronounced asymmetric resonance and antiresonance structure. The Fano line
obtained is attributed to the interaction of the raised virtual discrete energy level with the
continuum. Interestingly, the unitarity condition imposes the restriction that the transmission
coefficients vanish altogether at the zero energies, leading to the concept of an electronic mirror.

1. Introduction

Recently, a great deal of attention has been paid to the electron transport through dynamically
driven quantum structures [1-13]. Photon-assisted tunnelling problems were of particular

interest, as they are associated with the possibility of designing future fast electro-optic

devices [3, 8, 9]. Physically, important novel effects were suggested such as negative
differential resistance and dynamic localization of electrons in the open/closed systems
[5, 12].

The guantum structures studied are typically driven by a periodic time-dependent field,
~ coswt, with the spatial restriction that the excited region be smaller than the phase-
coherent length of the electron wave functions. In this case, many channels are opened
for the electron transmission. The Floquet states are conveniently used to describe the
corresponding electron states and it is transparent in this picture that the electron can transfer
from an incident central channél to the side channeld; + nhw wheren = £1, £2, ...,
with finite probabilities. This constitutes a fundamental difference from the static case where
only one channel is allowed for the electron transmission.

In this work we investigate the resonance structure of electron transmission through
a harmonically driven quantum well. The objective is to provide further insight into the
multichannel transmission problems of current interest, induced by dynamic driving fields,
using the theoretical model considered. To simplify our analysis we work in the short-range
interaction limit, i.e. assuming <« A wherea is the well width and\ is the characteristic
electron wavelength. With this model one can still understand the basic aspects of the
nonstationary tunnelling.

This paper is organized as follows. In section 2 we derive a formal expression for the
transmission amplitude under the multichannel conditions. Then, a theoretical scheme for
use of the finite-channel approximation is provided in section 3. In section 4 the results
obtained from both the perturbation method and the numerical calculation are given with
detailed analyses. The conclusions are drawn in section 5. A finite-channel approximation
procedure is developed in appendix A. In appendix B the unitarity conditions are obtained.
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2. Multichannel transmission

We consider an electron characterized by an effective massxposed to a static potential
U (x), that may represent the mean-field potential for quantum wells, and a time-dependent
potential V (x) coswt. The corresponding Hamiltonian is written as

2
H = . 4+ U(x) + V(x) coswt Q)
2m*

which satisfies
H(t +27/w) = H(1). (2)

The periodic property, equation (2), allows use of the Floquet state for the electron wave
function in the form [14]

oo
Wep(x, )= Y e UDERIDY, (v) €)
n=—0oo

where E is the quasienergy. Equation (3) imposes the restriction ¥hat,z, = Yg;
accordingly one has to only consider the electron energy in the first energy wiijaw)
or first Brillouin zone. Other energy window$zhw, (n + Dhw) with n = +£1, £2, ...,
may be treated in the extended zone scheme. A direct substitution of equation (3) into the
nonstationary Sckidinger equation brings out the equivalent equation for the amplitudes
¥, (x) to obey:

2 V(x) _
(25'1* + U(x)>¢n + T(l/fn+1 4+ Y1) = (E + nhw)y,. (4)
Aq
Ao
Ay C,
r,t Co
Bl (’71
Bl)
B,

Figure 1. A schematic diagram of the multichannel transmission induced by the harmonically
time-dependent fields, where only three channels are drawn as an illustragiodt denote the
reflection matrix and transmission matrix, respectively.

As a simple model, we take a square well with a defgthand a width in the range

—a/2 < x < a/2, and the time-dependent fiel@ coswt, whereVy is constant, is assumed
to be present inside the well. We further argue that the parameters of the quantum well are
chosen such that only a single shallow level exists, for calculational convenience, which
allows us to use the approximati@n(x) ~ —Upaé(x). So, the interactions of an electron
with the quantum well in equation (4) may be represented as

R? h?

Ux) = ——ud(x) V(x) = —2—vd(x) (5)
m m
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whereu = Uom*a/ﬁ2 andv = Vom*a/Zh_z. Then, the harmonic functions are specified in
each region as

A, e%* + B,enx x <0 ©)

B Wel-L x>0

where

k, = i Y/2m*(E + nhw)

is the electron wave vector. This situation is depicted in figure 1 schematically. The wave
vector of the electron with quasienerdy is real for E + nhew > 0 and is imaginary for
guasienergy givingt + hon < 0; in this casek, = ilk,|. We shall call the solutions with
real k, the open channeland the ones with imaginary, the closed channel¢evanescent

modes).
One can obtain the following matching conditionsvat O from equation (4):
¥a(07) = ¥,(07) =0 ¥, (07) = ¥,(07) = =2ut, — 20(Yg1 + Y1) )

The above equation (7) gives the connections among the amplitude vettdss and C
as

B=rA and C=tA (8)
where the transmissioft) and reflection(r) matrices are defined to be

t=i0'k and r=t—1. (9)
In the abovel is the identity matrix and the matricésandk are given as

Lo = (iky +u)8pp + V(Sp w41+ Spw—1) (10)
and

Kinn = knSp - (11)

The above equation (9) constitutes the formal solution of the single-well scattering problem.
To demonstrate its utility, we apply our theory to the static case. For the stationary
potential, i.e. whery = 0, we only have to take into account one chanme(0), and
from equation (9) it follows that
N iko
ko + u

r=t—1 (12)

The scattering amplitudes possess a pole at engpgs —h?u?/2m* which is the bound-
state energy of the electron in the well [15]. Also, one can see from equation (12) that
the transmissior(|¢|?) and reflection(|r|?) coefficients are monotonically increasing and
decreasing functions of energy fé&r > 0, respectively, which is the characteristic feature
of the short-range interaction potential.
In a general nonstationary situation, one has to invert the métrixemploying proper
numerical methods. However, using the tridiagonal structure of the n#atiixs possible
to invert it analytically and thus to obtain the amplitudes of reflection and transmission.
In particular, helpful information can be obtained when a finite humber of channgls
n=0,%1+£2 ..., £N, are taken into account. In appendix A we develop this procedure.
Also, one can make a simple connection between our formalism and the Landauer—
Buttiker formula. Since the transmission coefficiefi,, is defined to be the ratio of the
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incident current flux through channelover the outgoing flux through chann€l it can be
easily obtained that

k.
Ty = — |ty % 13
i |t (13)
Then, the total transmission coefficient at enefyys given by
T(E) = Tyo(E) (14)

where it should be noticed that only the single summation over all outgoing channels is
performed for a fixed incident wavgy.

3. Results and discussion

First, we present the perturbation results from the three-channel approximation. We have
also checked them numerically by choosing many channels for the given parameters.
The finite-channel approximation used here is equivalent to the weak-coupling limit phys-
ically [16]:

h?v?

Zm*
Having in mind that the incoming wave igo, we write the matrix¢ centred around the
n = 0 column and row as

iky 4+ u v 0
ﬁ:( v iko + u v ) (15)
0 v ik_1~|—u

By inverting £, we extract the transmission amplitudg(E) from equation (9), which
characterizes the direct tunnelling of an electron with quasienérdyetween channels
n =0 as

< ho.

iko
iko+u — v(1/[iky +ul)v — v(1/[ik_1 +uv’
The structure of the denominator of equation (16) suggests that a virtual transition takes
place from the channel = 0 to the channels = +1 in this tunnelling process.
Interestingly, when the electron is incident over the oscillating well through a particular

quasienergy interval0, hw), the transmission amplitudey(E) becomes identically zero at
a specific incident energy,

h%u?

m*
which lies in the continuum for the shallow level considered or in the high-frequency limit.
This result is obtained from equation (16) using the fact #yas real (open channel) but
k_1 = ilk_1] (closed channel) in the chosen energy window. Also, the @glehat makes
the denominator of equation (16) vanish is determined to be

E,=E—il (18)

too(E) = (16)

Eozha)

(17)

where

E~hw—

Ru? <1 202 ) r~ Rlkouv?
2m* kg + u?  2m* (k2 + u?)
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with

- 2m* _
ko = \/h?(ha) — RPu?/2m*).

Accordingly, we have found that the amplitude of equation (16) satisfies
E — Eg

E—E+il

The resulting transmission structure manifests the Fano asymmetric resonance structure:

the transmission amplitude possesses a zantrésonanckin real energyEy and a nearby

pole (esonance in complex energyE,, where 0 < Eo, E < ho. This is due to the

interaction of the virtual discrete level, raised up /fay from the bound state of the well

considered, with the continuum. This unusual resonance structure of the paired resonance

and antiresonance was studied by Fano in his pioneering work on the autoionization problem

in atomic excitation spectra [17]. In the static low-dimensional quantum structures, the Fano

resonances have been discussed at length [18, 19]. If the zero eRgrgy real (it can be

complex in a different energy window), the transmission amplitude equals zéfe=aE),

and the amplitude shows a peak At= E with a width I" near and to the right of.

We can also obtain the transmission amplituggE) from the channek = 0 to the open

channeln = 1 in the same energy windo{, iw).

In figure 2 the resulting Fano transmission lines are illustrated, where one can see clearly
the paired antiresonance and resonance structures. In figure 2(a) the antiresonance occurs
at E = Eg ~ 0.796 hw. And, the resonance occurs Bt= E ~ 0.817 hw, having a peak
value of 0985, with the widthl" ~ 0.009 ~w. The dotted curve depicts the monotonically
increasing transmission with energy in the static case. A similar feature is seen in figure 2(b)
although the overall scale is much smaller than the one in figure 2(a). It is suggestive that
Tio(E) has the same zero energy &g(E), which reflects the fact that our construction
satisfies the conservation of electron current, which reads

Too + T10 = Re(t0). (20)

The proof of equation (20) is given in appendix B. Equation (20) states thgp(E) = 0

at E = Ey, thenTyo(E) also vanishes at the same energy: the unitarity condition closes
the transition fromn = 0 ton = 1. Therefore, when an electron is incident upon the
nonstationary quantum well at the particular enefgy the well plays the role of a perfect
mirror, i.e. the Fanamirror. The total transmissiod’ (E) is not drawn, since there is no
appreciable difference frofyo(E). Also, we have confirmed this analytic result numerically

by taking into account a large number of channels in the parameter ranges where the finite-
channel model works.

Next, we shall carry out the general analysis of a nonstationary single-well system.
Using the tridiagonal structure of the matr& one can invert it to obtain the general
structure of the transmission amplitudes After inverting £, we managed to obtain a
formal representation of the componegf(E) from equation (9) as follows:

ikoAlA_]_
(Iko + M)A1A71 — UZ(AzAfl + Asz]_)
whereA . are the determinants of the sub-matriceg,of’hich are tridiagonal matrices with
dimension(+s, +00) x (&s, +00), respectively, where = 0, 1, .... Here, it is important

to notice that the choice of the reference column (or rewg 0 in the expansion of dét
is equivalent to specifying an initial harmonic in equation (3}as, 0) = Yo(x).

too(E) ~ (19)

too(E) =

(21)
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Figure 2. Coefficients of transmissiof,,o(E), equation (13), through the quasienergy Brillouin
zone (0, hw) where E is in units of hw: (a) Too(E) where the dotted curve shows the static
case; (b)T10(E), where the parameters were chosem as 0.45 andv = 0.15, both in units of
J2m*w/h. The total transmissiof (E) is not drawn since there is no appreciable difference
from Too(E).

We now find the zero energy of the transmission amplityg€F) in the quasienergy
interval (0, hw). In this energy window, wave vectoks are real forn > 0 and imaginary
for n < 0; consequently it turns out that the determinants are complex and\_; are
real fors > 1. Thus, the vanishing condition af_,, i.e.

A1=0 (22)

gives rise to the zero energy afo(E) for real E. In order to find the zero oiA_; we
further rewrite equation (22) by using the tridiagonal structure of the matrix as follows:

(—lkal + w)A_, —v®A_3=0 (23)
which gives
_ 2 A_z\?
Eo =how — 222 . 24
0= Fiw zm*<”+” A2> (24)

Then, we can perform the perturbation expansion for the right-hand side of equation (24) in
the weak-coupling limit. For the three-channel approximation we have recovered the result
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given in equation (17). And, for five-channel approximation we obtain the shift of the zero
energy along the real quasienergy axis as follows:

2

2 v2
° Zm*( |k2|—u> (23)

~ 2m* [ R2u?

Considering equation (22) for the determination of zeros is equivalent to solving the
Schibdinger equation (4). Here, we provide the wave function corresponding to equation
(22) atE = Ep. We have obtained that,(x) = 0 at allx for n > 0, and

where

Ag Sin(kgx) x <0
Yol(x) = (26)
0 x>0
wherekq = v/2m*Eo/h?, and
Yo = | B a0 (27)
—n\X) =
" C_,e thnl¥ x>0
where |k_,| = \/2m*(nEa) — Eo)/R°. It is seen that when the total reflection occurs the

incident wave with wave vectd forms a standing wave with the node at the interface
x = 0 for x < 0. On the other hand, all other nonvanishing channels belong to the
evanescent modes.

One can also find the expressions for complex Fano poles from equation (21), and a shift
has been obtained in the complex energy plane with the ordet-obrrection to equation
(18). Physically the poles of the scattering matrix (21) specify the quasibound states with
finite lifetimes~7/T.

Although we have considered so far a specific incident electron energy intéhvah),
the general many-channel amplitude equation (21) possesses a zero energy in each interval
(nhw, (n + Dhw) in the extended band scheme. We found that the zero energy is real
only for the quasienergy intervaD, hw). For example, if we consider the energy window
(hw, 2hw), we obtain the compleX, from equation (22):

— 7!2 u — ik,l A,4 2
b= 20— 5 (e (S 5 28
0 2m*< u2+k 4> A (28)

In order to understand the meaning of the complex energy more clearly, we ekpam
to orderv? as follows:

Eo ~ 2h (2 2uv? 1 1 29
0 “’_%Q’ oA (ik1+u+—|kz|+u)>' (29)

This shows that the zero afy(E) is displaced from the real axis to the complex quasienergy
plane. This situation can be understood physically as follows. We have obtained that the
incident wave withky can be scattered into another open channet_af with the same
energy in the energy window considered. So, in this case two waves with different wave
vectorskg andk_; coexist in the reflected region. Therefore, it is impossible for these waves
to interface simultaneously at the boundaries becaga@adk_; are incommensurable. This
means that the reflection is imperfect for the chosen quasienergy window.
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Finally, it seems worthwhile to mention the possible mechanisms for the time-dependent
driving fields. In reference [20], Jonson discussed the nondispersive localized phonons, the
electromagnetic field of a laser beam, and the oscillating ac voltage as possible sources,
depending on the physical systems under consideration. We found that the coupling constant
derived in reference [20] corresponds to @lit/zw)? roughly (see [16]). Thus, one may
find an estimate for the amplitude of the driving field using the coupling constants studied in
[20]. However, it should be noted that there is an essential difference between our work and
the model given in [20] where a double-barrier structure was considered. The resonance
in such structures is Breit-Wigner-type, and the transfer of resonant tunnelling from the
central peak to the satellite peaks was predicted due to the opening up of the sidebands. In
our case, we studied the attractive potential well with a bound state; consequently the Fano
resonances do appear due to the interaction of the virtual discrete level with the continuum,
providing a mechanism for aglectronic mirror.

4. Conclusion

We have studied the one-dimensional electron transmission through an oscillating semi-
conductor structure in detail. Due to the presence of the harmonic driving fields, the
incident electron finds many channels via which it can pass though the system. We have
obtained an analytic expression for the transmission coefficient matrix and have analysed it
perturbatively. Also, we have carried out a numerical evaluation by incorporating a large
number of channels to find a good agreement with the analytic finite-channel approximation.
Our results show the interesting Fano resonance structure for the chosen parameters,
i.e. an asymmetrically paired resonance and antiresonance line-shape. In particular, we
have developed the concept of the Fano mirror by noticing the quenching of the electron
transmission at the zero energies. When the electron is incident on the system with
guasienergies above the energy of one quantum associated with the driving fields, the
mirror becomes imperfect. As an extension of this work, it would be very interesting
to investigate whether it is possible to confine electrons dynamically between two Fano
mirrors. The results will be reported elsewhere [21].

A conventional quantum well is three dimensional; the transverse motion participates in
addition to the vertical transport that we have considered in the present work. However, it
is well known that the total transport can be reduced to a one-dimensional problem as long
as interactions that change the parallel momentum are suppressed [22]. Thus, the signature
of Fano resonances predicted may still be present in quantum wells within the assumed
ballistic limit at low temperatures.
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Appendix A. The finite-channel approximation

In this section a perturbation method of finding solution to the difference equation (4) is
developed; the equation is rewritten in the form

HOI/fn + V(X)('Q/fn.H_ + wn—l) = (E + nﬁa))wn (Al)
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where Hy = p?/2m* + U (x) is treated as the unperturbed part of Hamiltonian. We use the
idea of an operator expansion as an infinite fraction. To this end, we introduce the auxiliary
operatorsk;* and R defined through the relations

Vsi1 = Ry wherevy, =y, forn >0 (A2)

V_s+1 = R ¥ wherey_, = v, forn < 0. (A3)
For then = 0 case, by substituting equations (A2) and (A3) into equation (Al) we get

{Ho+ V(x)(R§ + Ry)} vo = Evno. (A4)

Accordingly, if Rj and R, are given, the harmonig, can be determined from equation
(A4). Next, we consider the case where> 0. By plugging equation (A2) into equation
(Al) we can obtain

(E + sho — Hy— VRN Y, = V1. (A5)
And, carrying out the relabelling — s — 1 in equation (A2) gives

Ve =R -1 (A6)
After substituting equation (A6) to equation (A5) and rearranging, one can identify that

R, =(E+sho—H—VR) V. (A7)
Similarly, for n < 0 the equation folR—, is obtained as

Ry, = (E—sho—H—VR-) V. (A8)
Now, let us truncate the infinite vector.., ¥_,, ..., ¥_1, Yo, ¥1, ..., ¥, ...) to a finite-
dimensional vector(y_y, ..., ¥_1, Yo, ¥1, ..., ¥x), assuming that aly, with [n| > N

vanish identically. This truncation corresponds to (& + 1)-channel approximation.
Then, equations (A2) and (A3) ensure that

Ry =0 and R~ =0. (A9)
Starting from equation (A9) for a choseN, one can generate ak and RZ; with
s=N-1,N-2, ...,0. ForinstanceR},_, is obtained from equation (A7) by substituting
in RY, =0:

RY = (E + Nho — Ho) V. (A10)
By substitutingR},_; into equation (A7), again fos = N — 1, one can obtaiR},_,. By
carrying out this recursive substitution one can produceRgll,, ..., R, Ry. Similarly,
starting fromR_,, = 0 one can obtain the operataks ..., R_;, Ry .

Next, with use of the?;” andR_, obtained, the harmoniag, can be determined. Putting
R¢ and R, in equation (A4) we can find the wave functign. Oncevy is specified,y,
and y_, are determined from equations (A2) and (A3) by successively applgihgand
RZ,, respectively, fox =1,2,..., N.

As a concrete example, we consider the three-channel approxin@fiea 1). In this
casewe sety_, =0=1vy, forn > 1 ande = 0 = RZ,; accordingly,

R = (E +ho — Hp) ™'V (A11)
and

Ry = (E —ho — Ho) V. (A12)
Then, the wave functionyg is obtained from equation (A4) as

1 1
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Also, from equations (A2) and (A3) we find

1
=— Al4
141 {E—i—ha)—Ho}V(x)wo (A14)
1
Yo1= {m} V (x)¥o. (A15)
Similarly, for the five-channel approximatiaiv = 2), we find the equation fotg:
H —_—V
{ R )
+ Vi(x) ! V(x) ! Vi(x) L Vi(x)
VETho—Hy VE+2hwo—Hy “E+ho—Hy
1
Vx) ————V
+ (x)E—ha)—Ho (x)
+ V(x) L V(x) ! V(x) ! V(x)
YE _ho—H, VE—2hw—Hy " E—ho—Hy |"°
= Evp. (A16)
And, with use ofy, the other components of the harmonics are determined from
_ 1 V()= V() (AL7)
VA =\ E ST —Ho T Exho—Hy' VEx o) V0
=— . A18
e T AL (19

The expansion developed indicates that the truncation of the infinite wave Jgctor
at the finite-number of components, the finite-channel approximation, is valid Wik
is sufficiently small that the terms apart frofly can be treated as a perturbation. For
example, in the three-channel approximation, equation (A13), the perturbed Hamiltonian, is
given by

1 n 1
E+ho—Hy E—ho

H = V(x)( — HO)V(x) (A19)

where one can see that the characteristic energy scale of the denomindtoer for —
electron quasienerg¥ ~ hw and the shallow level considered in the text. For the five-

channel approximation case, the perturbed terms are seen to be of the ofdeho§? in
equation (A16).

Appendix B. The unitarity condition

We provide in this appendix the unitarity conditions that the scattering matrices satisfy. The
current carried by each harmonig, is given by

n d
Jn=—e— Im<¢;‘ —1//n>. (B1)
m* X
For an open channel;, = A,€%*, this becomes

. h
Jn = _eﬁlAnlzkn (BZ)
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and for a closed channel it vanishes identically. Then, the total current incident through
many open channels is written as

E o0
li=—e " |A, . B3
o 2141 (83)

In general, the conservation of electron current through the system requirdsthét+ I,
where [, and I, denote the reflected and transmitted current, respectively:

D 1Ak =D 1Bk + ) ICal k. (B4)

n n

Equation (B4) can be rewritten in matrix form as

A'kA = B'kB + Cc'kC (B5)
which, using equations (8) and (9), can be further converted into
tTkt +rikr = k (B6)

implying that the scattering matrix is unitary. For the short-range potential considered we
have from equation (9)

r=t—1 (B7)
Accordingly, equation (B6) can be cast into the form
1
ttkt = é(kt +k't). (B8)

The above equation (B8) can be spelled out in detail in the three-channel approximation as
follows:

koltool? + ka|t10l* = ko Re(too) (B9)
kitigti1 + kotgptor = %(kltm + kotyp) (B10)
koltoa® + kalt11]* = k1 Re(t11) (B11)
kit11t10 + kotooty = %(kltlo + kotgy)- (B12)

In particular, equation (B9) is the one considered in the text explicitly, after dividing it
by ko and with the use of equation (13), to show the structure of the unitarity when the
harmonicn = 0 is chosen as the incident channel.
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