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Abstract. The electron transmission over an oscillating quantum well is studied perturbatively
and numerically in the phase-coherent regime. The dynamically induced multichannel situation
gives rise to a pronounced asymmetric resonance and antiresonance structure. The Fano line
obtained is attributed to the interaction of the raised virtual discrete energy level with the
continuum. Interestingly, the unitarity condition imposes the restriction that the transmission
coefficients vanish altogether at the zero energies, leading to the concept of an electronic mirror.

1. Introduction

Recently, a great deal of attention has been paid to the electron transport through dynamically
driven quantum structures [1–13]. Photon-assisted tunnelling problems were of particular
interest, as they are associated with the possibility of designing future fast electro-optic
devices [3, 8, 9]. Physically, important novel effects were suggested such as negative
differential resistance and dynamic localization of electrons in the open/closed systems
[5, 12].

The quantum structures studied are typically driven by a periodic time-dependent field,
∼ cosωt , with the spatial restriction that the excited region be smaller than the phase-
coherent length of the electron wave functions. In this case, many channels are opened
for the electron transmission. The Floquet states are conveniently used to describe the
corresponding electron states and it is transparent in this picture that the electron can transfer
from an incident central channelE to the side channels,E ± nh̄ω wheren = ±1, ±2, . . .,
with finite probabilities. This constitutes a fundamental difference from the static case where
only one channel is allowed for the electron transmission.

In this work we investigate the resonance structure of electron transmission through
a harmonically driven quantum well. The objective is to provide further insight into the
multichannel transmission problems of current interest, induced by dynamic driving fields,
using the theoretical model considered. To simplify our analysis we work in the short-range
interaction limit, i.e. assuminga � λ wherea is the well width andλ is the characteristic
electron wavelength. With this model one can still understand the basic aspects of the
nonstationary tunnelling.

This paper is organized as follows. In section 2 we derive a formal expression for the
transmission amplitude under the multichannel conditions. Then, a theoretical scheme for
use of the finite-channel approximation is provided in section 3. In section 4 the results
obtained from both the perturbation method and the numerical calculation are given with
detailed analyses. The conclusions are drawn in section 5. A finite-channel approximation
procedure is developed in appendix A. In appendix B the unitarity conditions are obtained.
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2. Multichannel transmission

We consider an electron characterized by an effective massm∗ exposed to a static potential
U(x), that may represent the mean-field potential for quantum wells, and a time-dependent
potentialV (x) cosωt . The corresponding Hamiltonian is written as

H = p2

2m∗
+ U(x)+ V (x) cosωt (1)

which satisfies

H(t + 2π/ω) = H(t). (2)

The periodic property, equation (2), allows use of the Floquet state for the electron wave
function in the form [14]

9E(x, t) =
∞∑

n=−∞
e−(i/h̄)(E+nh̄ω)tψn(x) (3)

whereE is the quasienergy. Equation (3) imposes the restriction that9E+nh̄ω = 9E ;
accordingly one has to only consider the electron energy in the first energy window(0, h̄ω)
or first Brillouin zone. Other energy windows,(nh̄ω, (n + 1)h̄ω) with n = ±1,±2, . . .,
may be treated in the extended zone scheme. A direct substitution of equation (3) into the
nonstationary Schrödinger equation brings out the equivalent equation for the amplitudes
ψn(x) to obey:(

p2

2m∗
+ U(x)

)
ψn + V (x)

2
(ψn+1+ ψn−1) = (E + nh̄ω)ψn. (4)

-

-

-
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Figure 1. A schematic diagram of the multichannel transmission induced by the harmonically
time-dependent fields, where only three channels are drawn as an illustration;r andt denote the
reflection matrix and transmission matrix, respectively.

As a simple model, we take a square well with a depthU0 and a width in the range
−a/26 x 6 a/2, and the time-dependent fieldV0 cosωt , whereV0 is constant, is assumed
to be present inside the well. We further argue that the parameters of the quantum well are
chosen such that only a single shallow level exists, for calculational convenience, which
allows us to use the approximationU(x) ≈ −U0aδ(x). So, the interactions of an electron
with the quantum well in equation (4) may be represented as

U(x) = − h̄
2

m∗
uδ(x) V (x) = −2

h̄2

m∗
vδ(x) (5)
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whereu ≡ U0m
∗a/h̄2 andv ≡ V0m

∗a/2h̄2. Then, the harmonic functions are specified in
each region as

ψn =
{
Ane

iknx + Bne
−iknx x < 0

Cne
iknx x > 0

(6)

where

kn = h̄−1
√

2m∗(E + nh̄ω)
is the electron wave vector. This situation is depicted in figure 1 schematically. The wave
vector of the electron with quasienergyE is real forE + nh̄ω > 0 and is imaginary for
quasienergy givingE + h̄ωn < 0; in this casekn = i|kn|. We shall call the solutions with
real kn the open channelsand the ones with imaginarykn the closed channels(evanescent
modes).

One can obtain the following matching conditions atx = 0 from equation (4):

ψn(0
+)− ψn(0−) = 0 ψ ′n(0

+)− ψ ′n(0−) = −2uψn − 2v(ψn+1+ ψn−1). (7)

The above equation (7) gives the connections among the amplitude vectorsA, B, andC
as

B = rA and C = tA (8)

where the transmission(t) and reflection(r) matrices are defined to be

t = i`−1k and r = t − 1. (9)

In the above,1 is the identity matrix and the matrices̀andk are given as

`n,n′ = (ikn + u)δn,n′ + v(δn,n′+1+ δn,n′−1) (10)

and

kn,n′ = knδn,n′ . (11)

The above equation (9) constitutes the formal solution of the single-well scattering problem.
To demonstrate its utility, we apply our theory to the static case. For the stationary

potential, i.e. whenV0 = 0, we only have to take into account one channel (n = 0), and
from equation (9) it follows that

t = ik0

ik0+ u r = t − 1. (12)

The scattering amplitudes possess a pole at energyEp = −h̄2u2/2m∗ which is the bound-
state energy of the electron in the well [15]. Also, one can see from equation (12) that
the transmission(|t |2) and reflection(|r|2) coefficients are monotonically increasing and
decreasing functions of energy forE > 0, respectively, which is the characteristic feature
of the short-range interaction potential.

In a general nonstationary situation, one has to invert the matrix` by employing proper
numerical methods. However, using the tridiagonal structure of the matrix`, it is possible
to invert it analytically and thus to obtain the amplitudes of reflection and transmission.
In particular, helpful information can be obtained when a finite number of channelsψn,
n = 0,±1,±2, . . . ,±N , are taken into account. In appendix A we develop this procedure.

Also, one can make a simple connection between our formalism and the Landauer–
Büttiker formula. Since the transmission coefficient,Tn′n is defined to be the ratio of the
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incident current flux through channeln over the outgoing flux through channeln′, it can be
easily obtained that

Tn′n = kn′

kn
|tn′n|2. (13)

Then, the total transmission coefficient at energyE is given by

T (E) =
∑
n′
Tn′0(E) (14)

where it should be noticed that only the single summation over all outgoing channels is
performed for a fixed incident waveψ0.

3. Results and discussion

First, we present the perturbation results from the three-channel approximation. We have
also checked them numerically by choosing many channels for the given parameters.
The finite-channel approximation used here is equivalent to the weak-coupling limit phys-
ically [16]:

h̄2v2

2m∗
� h̄ω.

Having in mind that the incoming wave isψ0, we write the matrix̀ centred around the
n = 0 column and row as

` =
( ik1+ u v 0

v ik0+ u v

0 v ik−1+ u

)
. (15)

By inverting `, we extract the transmission amplitudet00(E) from equation (9), which
characterizes the direct tunnelling of an electron with quasienergyE between channels
n = 0 as

t00(E) = ik0

ik0+ u− v(1/[ik1+ u])v − v(1/[ik−1+ u])v
. (16)

The structure of the denominator of equation (16) suggests that a virtual transition takes
place from the channeln = 0 to the channelsn = ±1 in this tunnelling process.

Interestingly, when the electron is incident over the oscillating well through a particular
quasienergy interval,(0, h̄ω), the transmission amplitudet00(E) becomes identically zero at
a specific incident energy,

E0 = h̄ω − h̄
2u2

2m∗
(17)

which lies in the continuum for the shallow level considered or in the high-frequency limit.
This result is obtained from equation (16) using the fact thatk0 is real (open channel) but
k−1 = i|k−1| (closed channel) in the chosen energy window. Also, the poleEp that makes
the denominator of equation (16) vanish is determined to be

Ep = Ẽ − i0 (18)

where

Ẽ ' h̄ω − h̄
2u2

2m∗

(
1− 2v2

k̃2
0 + u2

)
0 ' h̄2k̃0uv

2

2m∗(k̃2
0 + u2)
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with

k̃0 ≡
√

2m∗

h̄2 (h̄ω − h̄2u2/2m∗).

Accordingly, we have found that the amplitude of equation (16) satisfies

t00(E) ∼ E − E0

E − Ẽ + i0
. (19)

The resulting transmission structure manifests the Fano asymmetric resonance structure:
the transmission amplitude possesses a zero (antiresonance) in real energyE0 and a nearby
pole (resonance) in complex energyEp, where 0< E0, Ẽ < h̄ω. This is due to the
interaction of the virtual discrete level, raised up by ¯hω from the bound state of the well
considered, with the continuum. This unusual resonance structure of the paired resonance
and antiresonance was studied by Fano in his pioneering work on the autoionization problem
in atomic excitation spectra [17]. In the static low-dimensional quantum structures, the Fano
resonances have been discussed at length [18, 19]. If the zero energy,E0, is real (it can be
complex in a different energy window), the transmission amplitude equals zero atE = E0,
and the amplitude shows a peak atE = Ẽ with a width 0 near and to the right ofE0.
We can also obtain the transmission amplitudet10(E) from the channeln = 0 to the open
channeln = 1 in the same energy window(0, h̄ω).

In figure 2 the resulting Fano transmission lines are illustrated, where one can see clearly
the paired antiresonance and resonance structures. In figure 2(a) the antiresonance occurs
at E = E0 ' 0.796 h̄ω. And, the resonance occurs atE = Ẽ ' 0.817 h̄ω, having a peak
value of 0.985, with the width0 ' 0.009 h̄ω. The dotted curve depicts the monotonically
increasing transmission with energy in the static case. A similar feature is seen in figure 2(b)
although the overall scale is much smaller than the one in figure 2(a). It is suggestive that
T10(E) has the same zero energy asT00(E), which reflects the fact that our construction
satisfies the conservation of electron current, which reads

T00+ T10 = Re(t00). (20)

The proof of equation (20) is given in appendix B. Equation (20) states that ifT00(E) = 0
at E = E0, thenT10(E) also vanishes at the same energy: the unitarity condition closes
the transition fromn = 0 to n = 1. Therefore, when an electron is incident upon the
nonstationary quantum well at the particular energyE0, the well plays the role of a perfect
mirror, i.e. the Fanomirror. The total transmissionT (E) is not drawn, since there is no
appreciable difference fromT00(E). Also, we have confirmed this analytic result numerically
by taking into account a large number of channels in the parameter ranges where the finite-
channel model works.

Next, we shall carry out the general analysis of a nonstationary single-well system.
Using the tridiagonal structure of the matrix̀, one can invert it to obtain the general
structure of the transmission amplitudest. After inverting `, we managed to obtain a
formal representation of the componentt00(E) from equation (9) as follows:

t00(E) = ik0111−1

(ik0+ u)111−1− v2(121−1+1−211)
(21)

where1±s are the determinants of the sub-matrices of`, which are tridiagonal matrices with
dimension(±s,±∞)× (±s,±∞), respectively, wheres = 0, 1, . . .. Here, it is important
to notice that the choice of the reference column (or row)n = 0 in the expansion of det`
is equivalent to specifying an initial harmonic in equation (3) asψ(x, 0) ≡ ψ0(x).
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Figure 2. Coefficients of transmission,Tn′0(E), equation (13), through the quasienergy Brillouin
zone (0, h̄ω) whereE is in units of h̄ω: (a) T00(E) where the dotted curve shows the static
case; (b)T10(E), where the parameters were chosen asu = 0.45 andv = 0.15, both in units of√

2m∗ω/h̄. The total transmissionT (E) is not drawn since there is no appreciable difference
from T00(E).

We now find the zero energy of the transmission amplitudet00(E) in the quasienergy
interval (0, h̄ω). In this energy window, wave vectorskn are real forn > 0 and imaginary
for n < 0; consequently it turns out that the determinants1+s are complex and1−s are
real for s > 1. Thus, the vanishing condition of1−1, i.e.

1−1 = 0 (22)

gives rise to the zero energy oft00(E) for real E. In order to find the zero of1−1 we
further rewrite equation (22) by using the tridiagonal structure of the matrix as follows:

(−|k1| + u)1−2− v21−3 = 0 (23)

which gives

E0 = h̄ω − h̄2

2m∗

(
u+ v21−3

1−2

)2

. (24)

Then, we can perform the perturbation expansion for the right-hand side of equation (24) in
the weak-coupling limit. For the three-channel approximation we have recovered the result



Coherent resonant transmission in potential wells 10593

given in equation (17). And, for five-channel approximation we obtain the shift of the zero
energy along the real quasienergy axis as follows:

E0 = h̄ω − h̄2

2m∗

(
u+ v2

|k̃−2| − u

)2

(25)

where

|k̃−2| ≡
√

2m∗

h̄2

(
h̄ω + h̄

2u2

2m∗

)
.

Considering equation (22) for the determination of zeros is equivalent to solving the
Schr̈odinger equation (4). Here, we provide the wave function corresponding to equation
(22) atE = E0. We have obtained thatψn(x) = 0 at all x for n > 0, and

ψ0(x) =
{
A0 sin(k0x) x < 0

0 x > 0
(26)

wherek0 =
√

2m∗E0/h̄
2, and

ψ−n(x) =
{
B−ne|k−n|x x < 0

C−ne−|k−n|x x > 0
(27)

where |k−n| =
√

2m∗(nh̄ω − E0)/h̄
2. It is seen that when the total reflection occurs the

incident wave with wave vectork0 forms a standing waveψ0 with the node at the interface
x = 0 for x < 0. On the other hand, all other nonvanishing channels belong to the
evanescent modes.

One can also find the expressions for complex Fano poles from equation (21), and a shift
has been obtained in the complex energy plane with the order-of-v4 correction to equation
(18). Physically the poles of the scattering matrix (21) specify the quasibound states with
finite lifetimes∼h̄/0.

Although we have considered so far a specific incident electron energy interval,(0, h̄ω),
the general many-channel amplitude equation (21) possesses a zero energy in each interval
(nh̄ω, (n + 1)h̄ω) in the extended band scheme. We found that the zero energy is real
only for the quasienergy interval(0, h̄ω). For example, if we consider the energy window
(h̄ω, 2h̄ω), we obtain the complexE0 from equation (22):

E0 = 2h̄ω − h̄2

2m∗

(
u+ v2

(
u− ik−1

u2+ k−1
2 +

1−4

1−3

))2

. (28)

In order to understand the meaning of the complex energy more clearly, we expandE0 up
to orderv2 as follows:

E0 ' 2h̄ω − h̄2

2m∗

(
u2− 2uv2

(
1

ik−1+ u +
1

−|k−2| + u
))
. (29)

This shows that the zero oft00(E) is displaced from the real axis to the complex quasienergy
plane. This situation can be understood physically as follows. We have obtained that the
incident wave withk0 can be scattered into another open channel ofk−1 with the same
energy in the energy window considered. So, in this case two waves with different wave
vectorsk0 andk−1 coexist in the reflected region. Therefore, it is impossible for these waves
to interface simultaneously at the boundaries becausek0 andk−1 are incommensurable. This
means that the reflection is imperfect for the chosen quasienergy window.
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Finally, it seems worthwhile to mention the possible mechanisms for the time-dependent
driving fields. In reference [20], Jonson discussed the nondispersive localized phonons, the
electromagnetic field of a laser beam, and the oscillating ac voltage as possible sources,
depending on the physical systems under consideration. We found that the coupling constant
derived in reference [20] corresponds to our(V0/h̄ω)

2 roughly (see [16]). Thus, one may
find an estimate for the amplitude of the driving field using the coupling constants studied in
[20]. However, it should be noted that there is an essential difference between our work and
the model given in [20] where a double-barrier structure was considered. The resonance
in such structures is Breit–Wigner-type, and the transfer of resonant tunnelling from the
central peak to the satellite peaks was predicted due to the opening up of the sidebands. In
our case, we studied the attractive potential well with a bound state; consequently the Fano
resonances do appear due to the interaction of the virtual discrete level with the continuum,
providing a mechanism for anelectronic mirror.

4. Conclusion

We have studied the one-dimensional electron transmission through an oscillating semi-
conductor structure in detail. Due to the presence of the harmonic driving fields, the
incident electron finds many channels via which it can pass though the system. We have
obtained an analytic expression for the transmission coefficient matrix and have analysed it
perturbatively. Also, we have carried out a numerical evaluation by incorporating a large
number of channels to find a good agreement with the analytic finite-channel approximation.
Our results show the interesting Fano resonance structure for the chosen parameters,
i.e. an asymmetrically paired resonance and antiresonance line-shape. In particular, we
have developed the concept of the Fano mirror by noticing the quenching of the electron
transmission at the zero energies. When the electron is incident on the system with
quasienergies above the energy of one quantum associated with the driving fields, the
mirror becomes imperfect. As an extension of this work, it would be very interesting
to investigate whether it is possible to confine electrons dynamically between two Fano
mirrors. The results will be reported elsewhere [21].

A conventional quantum well is three dimensional; the transverse motion participates in
addition to the vertical transport that we have considered in the present work. However, it
is well known that the total transport can be reduced to a one-dimensional problem as long
as interactions that change the parallel momentum are suppressed [22]. Thus, the signature
of Fano resonances predicted may still be present in quantum wells within the assumed
ballistic limit at low temperatures.
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Appendix A. The finite-channel approximation

In this section a perturbation method of finding solution to the difference equation (4) is
developed; the equation is rewritten in the form

H0ψn + V (x)(ψn+1+ ψn−1) = (E + nh̄ω)ψn (A1)



Coherent resonant transmission in potential wells 10595

whereH0 = p2/2m∗ +U(x) is treated as the unperturbed part of Hamiltonian. We use the
idea of an operator expansion as an infinite fraction. To this end, we introduce the auxiliary
operatorsR+s andR−s defined through the relations

ψs+1 = R+s ψs whereψs ≡ ψn for n > 0 (A2)

ψ−(s+1) = R+−sψ−s whereψ−s ≡ ψn for n < 0. (A3)

For then = 0 case, by substituting equations (A2) and (A3) into equation (A1) we get{
H0+ V (x)(R+0 + R−0 )

}
ψ0 = Eψ0. (A4)

Accordingly, if R+0 andR−0 are given, the harmonicψ0 can be determined from equation
(A4). Next, we consider the case wheren > 0. By plugging equation (A2) into equation
(A1) we can obtain

(E + sh̄ω −H0− VR+s )ψs = Vψs−1. (A5)

And, carrying out the relabellings → s − 1 in equation (A2) gives

ψs = R+s−1ψs−1. (A6)

After substituting equation (A6) to equation (A5) and rearranging, one can identify that

R+s−1 = (E + sh̄ω −H − VR+s )−1
V. (A7)

Similarly, for n < 0 the equation forR−−s is obtained as

R−−s+1 = (E − sh̄ω −H − VR−−s)−1
V. (A8)

Now, let us truncate the infinite vector(. . . , ψ−n, . . . , ψ−1, ψ0, ψ1, . . . , ψn, . . .) to a finite-
dimensional vector,(ψ−N, . . . , ψ−1, ψ0, ψ1, . . . , ψN), assuming that allψn with |n| > N

vanish identically. This truncation corresponds to the(2N + 1)-channel approximation.
Then, equations (A2) and (A3) ensure that

R+N = 0 and R−−N = 0. (A9)

Starting from equation (A9) for a chosenN , one can generate allR+s and R−−s with
s = N−1, N−2, . . . ,0. For instance,R+N−1 is obtained from equation (A7) by substituting
in R+N = 0:

R+N−1 = (E +Nh̄ω −H0)
−1V. (A10)

By substitutingR+N−1 into equation (A7), again fors = N − 1, one can obtainR+N−2. By
carrying out this recursive substitution one can produce allR+N−1, . . . , R

+
1 , R

+
0 . Similarly,

starting fromR−−N = 0 one can obtain the operatorsR−−N+1, . . . , R
−
−1, R

−
0 .

Next, with use of theR+s andR−−s obtained, the harmonicsψn can be determined. Putting
R+0 andR−0 in equation (A4) we can find the wave functionψ0. Onceψ0 is specified,ψs
andψ−s are determined from equations (A2) and (A3) by successively applyingR+s and
R−−s , respectively, fors = 1, 2, . . . , N .

As a concrete example, we consider the three-channel approximation(N = 1). In this
case we setψ−n ≡ 0≡ ψn for n > 1 andR+1 = 0= R−−1; accordingly,

R+0 = (E + h̄ω −H0)
−1V (A11)

and

R−0 = (E − h̄ω −H0)
−1V. (A12)

Then, the wave functionψ0 is obtained from equation (A4) as{
H0+ V (x) 1

E + h̄ω −H0
V (x)+ V (x) 1

E − h̄ω −H0
V (x)

}
ψ0 = Eψ0. (A13)
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Also, from equations (A2) and (A3) we find

ψ1 =
{

1

E + h̄ω −H0

}
V (x)ψ0 (A14)

ψ−1 =
{

1

E − h̄ω −H0

}
V (x)ψ0. (A15)

Similarly, for the five-channel approximation(N = 2), we find the equation forψ0:{
H0+ V (x) 1

E + h̄ω −H0
V (x)

+ V (x) 1

E + h̄ω −H0
V (x)

1

E + 2h̄ω −H0
V (x)

1

E + h̄ω −H0
V (x)

+ V (x) 1

E − h̄ω −H0
V (x)

+ V (x) 1

E − h̄ω −Ho V (x)
1

E − 2h̄ω −H0
V (x)

1

E − h̄ω −H0
V (x)

}
ψ0

= Eψ0. (A16)

And, with use ofψ0 the other components of the harmonics are determined from

ψ±1 =
{

1

E ± h̄ω −H0
+ 1

E ± h̄ω −H0
V (x)

1

E ± 2h̄ω −H0

}
V (x)ψ0 (A17)

ψ±2 =
{

1

E ± h̄ω −H0

}
V (x)ψ0. (A18)

The expansion developed indicates that the truncation of the infinite wave vector{ψ}
at the finite-number of components, the finite-channel approximation, is valid whenV/h̄ω

is sufficiently small that the terms apart fromH0 can be treated as a perturbation. For
example, in the three-channel approximation, equation (A13), the perturbed Hamiltonian, is
given by

H ′ = V (x)
(

1

E + h̄ω −H0
+ 1

E − h̄ω −H0

)
V (x) (A19)

where one can see that the characteristic energy scale of the denominator is ¯hω for
electron quasienergyE ∼ h̄ω and the shallow level considered in the text. For the five-
channel approximation case, the perturbed terms are seen to be of the order of(V/h̄ω)2 in
equation (A16).

Appendix B. The unitarity condition

We provide in this appendix the unitarity conditions that the scattering matrices satisfy. The
current carried by each harmonicψn is given by

jn = −e h̄
m∗

Im

(
ψ∗n

∂

∂x
ψn

)
. (B1)

For an open channel,ψn = Aneiknx , this becomes

jn = −e h̄
m∗
|An|2kn (B2)
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and for a closed channel it vanishes identically. Then, the total current incident through
many open channels is written as

Ii = −e h̄
m∗

∞∑
n=0

|An|2kn. (B3)

In general, the conservation of electron current through the system requires thatIi = Ir + It
whereIr andIt denote the reflected and transmitted current, respectively:∑

n

|An|2kn =
∑
n

|Bn|2kn +
∑
n

|Cn|2kn. (B4)

Equation (B4) can be rewritten in matrix form as

A†kA = B†kB +C†kC (B5)

which, using equations (8) and (9), can be further converted into

t†kt + r†kr = k (B6)

implying that the scattering matrix is unitary. For the short-range potential considered we
have from equation (9)

r = t − 1. (B7)

Accordingly, equation (B6) can be cast into the form

t†kt = 1

2
(kt + k†t). (B8)

The above equation (B8) can be spelled out in detail in the three-channel approximation as
follows:

k0|t00|2+ k1|t10|2 = k0 Re(t00) (B9)

k1t
∗
10t11+ k0t

∗
00t01 = 1

2
(k1t01+ k0t

∗
10) (B10)

k0|t01|2+ k1|t11|2 = k1 Re(t11) (B11)

k1t
∗
11t10+ k0t00t

∗
01 =

1

2
(k1t10+ k0t

∗
01). (B12)

In particular, equation (B9) is the one considered in the text explicitly, after dividing it
by k0 and with the use of equation (13), to show the structure of the unitarity when the
harmonicn = 0 is chosen as the incident channel.

References

[1] Johansson P 1990Phys. Rev.B 41 9892
[2] Wingreen N S, Jacobsen K W and Wilkins J W 1989Phys. Rev.B 40 11 834
[3] Sumetskii M 1991Phys. Lett.153A 149

Sumetskii M 1992Phys. Rev.B 46 4702
[4] Großmann F, Dittrich T, Jung P and Hänggi P 1991Phys. Rev. Lett.67 516
[5] Bavli R and Metiu H 1992Phys. Rev. Lett.69 1986

Bavli R and Metiu H 1993Phys. Rev.A 47 3299
[6] Yeyati L and Flores F 1992J. Phys.: Condens. Matter4 7341
[7] Datta S and Anantram M P 1992Phys. Rev.B 45 13 761
[8] Guimar̃aes P S S, Keay B J, Kaminski J P, Allen S J Jr, Hopkins P F, Gossard A C, Florez L T and Harbison

J P 1993Phys. Rev. Lett.70 3792
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